Lib.Numinclude module type of struct include C.Num endtype scalar = C.scalarElement of the native scalar field.
type 'a repr = 'a C.reprRepresentation of values.
type 'a t = 'a C.tPlompiler program.
val constant : Csir.Scalar.t -> scalar repr tconstant s returns the constant value s.
range_check ~nb_bits s asserts that s is in the range [0, 2^nb_bits).
val custom :
?qc:Csir.Scalar.t ->
?ql:Csir.Scalar.t ->
?qr:Csir.Scalar.t ->
?qo:Csir.Scalar.t ->
?qm:Csir.Scalar.t ->
?qx2b:Csir.Scalar.t ->
?qx5a:Csir.Scalar.t ->
scalar repr ->
scalar repr ->
scalar repr tcustom ~qc ~ql ~qr ~qo ~qm ~qx2b ~qx5a a b returns a value c for which the following arithmetic constraint is added: qc + ql * a + qr * b + qo * c + qm * a * b + qx2b * b^2 + qx5a * a^5 = 0
Manually adding constraints can be error-prone. Handle with care.
val assert_custom :
?qc:Csir.Scalar.t ->
?ql:Csir.Scalar.t ->
?qr:Csir.Scalar.t ->
?qo:Csir.Scalar.t ->
?qm:Csir.Scalar.t ->
scalar repr ->
scalar repr ->
scalar repr ->
unit repr tassert_custom ~qc ~ql ~qr ~qo ~qm a b c asserts the following arithmetic constraint: qc + ql * a + qr * b + qo * c + qm * a * b + qx2b * b^2 + qx5a * a^5 = 0
Manually adding constraints can be error-prone. Handle with care.
val add :
?qc:Csir.Scalar.t ->
?ql:Csir.Scalar.t ->
?qr:Csir.Scalar.t ->
scalar repr ->
scalar repr ->
scalar repr tadd ~qc ~ql ~qr a b returns a value c such that ql * a + qr * b + qc = c.
val add_constant :
?ql:Csir.Scalar.t ->
Csir.Scalar.t ->
scalar repr ->
scalar repr tadd_constant ~ql k a returns a value c such that ql * a + k = c.
mul ~qm a b returns a value c such that qm * a * b = c.
div ~den_coeff a b asserts b is non-zero and returns a value c such that a / (b * den_coeff) = c.
is_zero a returns a boolean c representing whether a is zero.
val add_list :
?qc:Csir.Scalar.t ->
?coeffs:Csir.Scalar.t list ->
C.Num.scalar list repr ->
C.Num.scalar C.Num.repr tval mul_list : C.Num.scalar list repr -> C.Num.scalar C.Num.repr tval mul_by_constant :
Csir.Scalar.t ->
C.Num.scalar C.Num.repr ->
C.Num.scalar C.Num.repr C.Num.tval assert_eq_const :
C.Num.scalar C.Num.repr ->
Csir.Scalar.t ->
unit C.Num.repr C.Num.tval is_eq_const : scalar repr -> Csir.Scalar.t -> bool repr tval geq :
(C.Num.scalar C.Num.repr * Z.t) ->
(C.Num.scalar C.Num.repr * Z.t) ->
bool Bool.repr t